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An express ion is obtained to determine the fract ion of the thermal  res i s tance  of a pipe 
wall which must  be r e fe r red  to the inner boundary when using the heat balance equation 
for the wall instead of the heat conduction equation (for a heat exchanger with independent 
heating). Limits  of applicability of the model with tempera ture  concentrated along the 
pipe radius a re  given. 

Widely used in the analysis  of t ransients  in heat exchangers is the simplification that the heat 
conduction equation of the pipe wall can be replaced by the heat balance equation. To take account of the 
heat conduction of the metal, a cer ta in  fract ion of the wall thermal  res is tance  is r e fe r red  to the inner (or 
outer) boundary, i.e., heat-exchange coefficients with a cor rec t ion  for the res i s tance  of the metal heat 
conduction are  introduced [1]. Up to now, individual computations of part icular  cases  by exact and ap-  
proximate methods are  known on whose basis it is impossible to make general  deductions. 

The possibil i ty of using a simplified model to determine the frequency charac te r i s t i cs  of a tubular 
heat exchanger with independent heating (internal heat l iberation in the wail or heating f rom outside by rad ia -  
tion, say) for  a heat c a r r i e r  with changing propert ies  (near-cr i t ica l  state, boiling fluid) is analyzed herein 
by comparing models with the pipe wall t empera ture  distributed and concentrated along the radius�9 

Let us f i rs t  examine the model with wall tempera ture  distributed along the radius.  The processes  oc-  
curr ing in a tubular heat exchanger under the standard assumptions can be described by a sys tem of equa- 
tions including the energy,  s t r eam continuity and motion equations (in a one-dimensional  approximation), 
and the wall heat conduction equation: 
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= 0 for internal heat liberation, (6) 

Or 

F. E. Dzerzhinskii  All-Union Thermal  Engineering Institute, Moscow. Translated f rom Inzhenerno- 
Fizicheskii  Zhurnal, VoI. 19, No. 6, pp. 1079-1087, December ,  1970. Original ar t ic le  submitted July 25, 1969. 

�9 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, 
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without 
permission of the publisher. A copy of this article is available from the publisher for $15.00. 

1555 



or 

Oqb __ Q 1  for external heating (7) 
Or s 

(both cases  will be examined simultaneously later). 

Let  us investigate the process  for  small  sinusoida[ perturbat ions of the enthatpy, discharge,  and 
p re s su re  of the medium at the inlet, and also for perturbat ions by the heat flux, i .e. ,  let us assume that 

/out=/utoq- ieio~t; Gou~Go ( l § goeu~ot); Pout..- Pouto_ § Pout eft~ (8) 

Qin=Qmo( 1 + qeiOt); Q~=Qlo (1 4- qei~t). 

Because of these perturbat ions changes in the pa ramete r s  along the heat exchanger will occur. In 
a l inear approximation we can assume 

I = 1o (0 + i (0r 

P = Po (l) § p (l) eiO~t, 

G : G O [ 1 + g (t) eiCOt], 

qb = qb o (l, r) § ~ (l, r) ei~t. 

Deviations in the t empera tu re  of the medium and the specific volume a re  determined by the ex-  
press ions  

O=Oo+( +ovt  o, 
Cp 

v = v. § (%i § %p) ei~t. 

(9) 

~lO) 

Here  we used the notation 

. 
I 

'Or 

Considering the changes in the pa rame te r s  to occur re la t ive ly  slowly, we can assume that the coef-  
f icient of hydraulic r es i s t ance  does not va ry  in a nonstat ionary process ,  and the coefficient of heat ex-  
change var ies  according to s ta t ionary regular i t ies .  Taking account of the dependence of ~2 on the enthalpy, 
discharge,  and heat flux (in the boiling case),  we wili have 

%=cz~o{1 § lq_[ %0 0~01 i § § (~2~, Cpi 6p)]e#~t}, (11) 

where the coefficients a re  

Oo /lg = - -  
0~o 

Let us substitute (9)-(11) into (1)-(7). 
us rep lace  the length coordinate l by the enthalpy I 0 in the static mode [dl = (d2Go/4Q20)dIo]. Using the 
notation PI = [ 1 -  (cpQ20/~lo)] (ac~2/0I), Tp = d2/~G0vo, ~ = d l / d  2, we obtain a sys tem of equations for the 
deviations: 

Let us el iminate the stat ics equation and, for  convenience, let 

d, . o . r + . [  [ jo vod ] 
dIo = Q~o~q ~ ~gg Q2o p Q~oe~,, 4Q2ovo i - -  1 §  4Q~o g § ~Q2o p, (12) 

dg ]cod 2 
dlo -- 4Q~o~o- ~ (%i + %p); (13) 

dp g G g [ i  9.8d~ sin ~ ] ~G3ovO 
dl o 4Q~ o 2 ~G~v~ -]- jcoTp (%i -~- opp) --4~2o (14-]r (14) 
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The bounda ry  condi t ions  will  be: 

for r = r 2 

XM - ~ -  = ~r ~q F g g -  5 p -  Q2o% ' (16) 

or  

fo r  r = r 1 

o ,  = 0; 07) 
Or 

~, O~ q Q~o ; (18) 
Or 

and fo r  l = 0 

i = /out,g = gout' P : Pout' (19) 

Solving [15] taking accoun t  of the bounda ry  condi t ions  (16) and (17) or  (16) and (18) ( fo rQin  0 = 0), r e -  
s p e c t i v e l y  [2], we find fo r  the wai l  t e m p e r a t u r e  dev ia t ion  on the inner  bounda ry  of the pipe: 

, r  Q20 Bi l-tgg %05 ~tja.z0 ] Q20 2]KBi~q 
= %0 (,ttqK-- Bi) " _ Q2o P Q~oc p i - -  - -  (20) %0 (ftqK - -  Bi) g~ (~2 _ 1) q 

in the ca se  of i n t e rna l  hea t  l i b e r a t i o n  and 

~r Q2o Bi [ a2o8 ~tl~2O ] Q2o Bi~t~ 
= %0 (pqK--Bi )"  ~ t g g -  Q2o p Q2oc p i + - - % o  (~tqK-- Bi)--v~g2 q (21) 

fo r  heat ing  f r o m  outs ide .  H e r e  

[ (o / o 
g l = r l l /  T Y 2 = r 2 V  - a -  Bi a~~ " 

V = [(ker' y~ + ] kei' Y0 (ber y~ + ] bei go.) - -  (ber' y~ + ] bei' g~) (ker Y2+] kei y~)]; 

K = y~ [(ker' y~ + ] keV Y0 (ber' Y2 + ] bei' g o ) -  (her' y~ + ] bei' gl) (ker' g2 + ]kei '  y~)]. 
V 

Subst i tu t ing ~r2 into (12), we obta in  

dl~- -- 4Q~ov ~ -}- Q2ocp " (~txK-- Bi) i - -  1 j ~ q K  - -  Bi 

@ 4Q2o " g - -  Q2o (~qK--  Bi) 4Q2o p § Fq, 
(22) 

w h e r e  F has  the va lue  

Y = - -  21K Bi 
y~ (r __ l) 6tqK - -  Bi) (23) 

f o r  i n t e rna l  hea t  l i be ra t ion ,  and 

Bi 
F = (24) 

VCY2 (~tqK - -  Bi) 

fo r  hea t ing  f r o m  outs ide .  

T h e r e f o r e ,  in the g e n e r a [  c a s e  t r a n s i e n t s  a r e  d e s c r i b e d  by the s y s t e m  (22), (13), and (14) with the 
bounda ry  condi t ions  (19) f o r  s m a l l  p e r t u r b a t i o n s  in hea t  e x c h a n g e r s  with u n i f o r m  hea t ing  a long  the length 
( in terna l  hea t  s o u r c e s  or  hea t ing  f r o m  outside) .  This  s y s t e m  can be used  to compu te  the dynamic  c h a r a c -  
t e r i s t i c s  of hea t  e x c h a n g e r s  with a s i n g l e - p h a s e  hea t  c a r r i e r  in the n e a r - c r i t i c a l  s t a te  [3, 4]. As a p a r -  
t i cu l a r  c a s e  {Cp ~ ~,  #g = 0, pq ~ 0.3), we obta in  equat ions  d e s c r i b i n g  the p r o c e s s  in hea t  e x c h a n g e r s  with 
a boi l ing hea t  c a r r i e r  f r o m  (22), (13), and (14) if the boi l ing  fluid is  c o n s i d e r e d  a homogeneous  med ium.  
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Now, let  us examine the s implif ied model.  Let us a s s u m e  the pipe wall  to be absolute ly  heat con-  
ductive, but t he r e  is a t he rm a l  r e s i s t a n c e  a t  its inner boundary which equals the actual  plus the r e s i s t ance  
of heat  conductivity,  i .e. ,  the wall  has a constant t e m p e r a t u r e  along the radius  which equals some rea l  
t e m p e r a t u r e  at  a definite dis tance [1]. Then the heat conduction equation (4) with the boundary conditions 
(5)-(7) is rep laced  in the s y s t e m  (1)-(7) by the heat balance equation 

4d~ " Ot + [~2 (UP - -  0), (25) 

where  ~ is the  pipe t e m p e r a t u r e  averaged  over  the radius;  /32 is the reduced coefficient  of heat  exchange 
taking account  of the t he rma l  wall  r e s i s t ance  and defined by the fo rmula  [1] 

1 --  as (26) 
[32= 1 , +  ad~ ln~  l ~ + a B i l n  

a~ 2L~ 

Here  a is the f rac t ion  of the r e s i s t ance  of heat  conduction r e f e r r ed  to the inner boundary. 

Start ing f r o m  the assumpt ions  made,  in place of ce 2 and ~ in the energy  equation (1) there  now enter  
/32 and ~,  r espec t ive ly ,  i .e . ,  

l_l_. OI_I_+G OI _ 4 ~ ( U P _ o ) +  OP _ G v  O___GG , (27) 
v Ot Ol d 2 Ot Ot 

and (2) and (3) r e m a i n  as  they are .  

Going over  to the deviat ions in (25) and (27), replacing the length coordinate  by the enthaipy ana lo-  
gously, and taking into account that the hea t -exchange  coefficient  3z is de termined by the express ion  

~ [ 1 
1~2=~2o 1 + - ~ - ~  a2o 

o.( , )]} Oa~ i + pgg + • # - - - - - - 6 p  d ~ 
Ol ~ cp ' 

(2s) 

where  

•  ~o * 1__• Q2o [ 0% ~ 
%0' ~ =  %0 ~ OQ~ ] '  

we obtain the energy  equation 

Q2oCp 

+ 402o g - -  LQ2o (-f + loT~t~) 402o p + 1 + floTM~; 
(29) 

Here  

T~ = , 4~d  2 

The continuity and motion equations for  the deviations re ta in  thei r  fo rm,  i .e. ,  the p roces se s  a r e  
descr ibed  by the s y s t e m  (29), (13), and (14) with the boundary conditions (19) upon assuming  constancy of 
the wall  t e m p e r a t u r e  along the radius.  There fore ,  in o rder  for  the models  with concentrated and dis t r ibuted 
wall t e m p e r a t u r e  along the radius  to be equivalent, it is n e c e s s a r y  to se lec t  the heat -exchange coefficient 
fi2 (which means  o- also) in such a way that (22) and (29) would turn out to be identical.  Compar ing the coef -  
f icients  of i, g, p, and q in these equations, we can a r r i v e  at  the deduction that two equal i t ies  

K x]~ (30) 
~ t q K  - -  Bi 1 + io~TMbt*r ' 

2]K Bi 1 (31) 
�9 - -  " ( 0  * ~ y22,t~ - -  1) (~qK - -  Bi) 1 + I TMP~q 
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Fig. 1. Dependence  of the f r a c t i o n  of heat  conduct ion  r e s i s t a n c e  r e f e r r e d  to the inner  pipe boundary  on the 
p a r a m e t e r  Y2 = r2 ~ /w/a  fo r  d i f fe ren t  r a t i o s  ~ = d l / d  2. 

Fig.  2. Coeff ic ient  to conve r t  the pe r tu rba t ions  by the ex te rna l  heat  flux to an equivalent  pe r tu rba t ion  of 
the i n t e r aa l  heat  source .  

Fig.  3. Dependence  of the quant i ty  o- [n~ f o r  w = 0 on the r a t io  of the d i a m e t e r s  [. 

m u s t  be sa t i s f ied  fo r  the equat ions  to be ident ical  fo r  in te rna l  heat  l ibe ra t ion  in the wall ,  whe re  the f o r m e r  
is obtained f r o m  equal iz ing  the coef f ic ien ts  fo r  i, g, and p and the second f r o m  the condit ion of equal i ty  of 
the coef f ic ien ts  fo r  q. If the value  

r ( ~  r~(~ 1)at2%~ -- Y~(~2--1) 
' 4 ~ d  2 -- 2~2aQa2o 2 Bi • 

is subst i tu ted  into (30), then it will  be 

K i#~ ( ~  - i) 
- = , ( 3 2 )  

~tqK - -  Bi 2 Bi • + ]g~ (~2 _ 1) ~tq 

Subst i tut ing wT M in (31), we obtain  an  e x p r e s s i o n  ident ical  to (32). T h e r e f o r e ,  if we d e t e r m i n e  
#20 f r o m  (32) take this value  when using the heat  ba lance  equation,  the r e s u l t  of comput ing  the devia t ions  
in the m e d i u m  p a r a m e t e r s  will  a g r e e  with the c o r r e s p o n d i n g  solut ion of the p rob lem taking accoun t  of the 
d i s t r ibu t iv i ty  of the wal l  t e m p e r a t u r e  a long  the rad ius .  Solving this  equat ion fo r  ~ we find 

• ff2o I (33) 1] 
a20 1 + Bi 2 

Y2 (~ - -  I)  K 

Now, let us d e t e r m i n e  the f r a c t i o n  of the t h e r m a l  r e s i s t a n c e  o- which mus t  be r e f e r r e d  to the inner  
pipe boundary .  Equat ing the value of ~ obtained f r o m  (26) to (33), we will  have 

1 [ 2j 1 ] (34) 
= y 2 ( ~ 2  1) K " In ~ 2 

If the p rob l e m  of de t e rmin ing  /320 in the c a s e  of heat ing a heat  exchanger  outs ide  is examined,  then 
because  the flux e n e r g y  equat ion in this ea se  is d i f fe ren t  f r o m  the c o r r e s p o n d i n g  equat ion for  heat ing by an  
inner  s o u r c e  only by the p r e s e n c e  of a t e r m  with a heat  f lux pe r tu rba t ion  q, we can a r r i v e  at  the deduct ion 
that  (34) r e m a i n s  val id fo r  a l l  pe r tu rba t ions  (i, g, p). As  r e g a r d s  the heat  f lux pe r tu rba t ions  q, in this 
c a s e  cr should dif fer  f r o m  the va lues  obtained in (34). F o r  convenience  in the computa t ions ,  however ,  it is 
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convenient to re ta in  the same value of T M (and therefore ,  of (r and flz0) in the t e rm q / (1  + j~0TMP~) for 
heating f rom outside as in the remaining terms.  

Then to conserve the identity of the equations, the value of q must be multiplied by the rat io between 
(23) and (24), i.e., by 

~ ( ~ - -  I) (~qK--Bi) Bi ]y~ (~2 _ I) (35) 
~q = - -  Y ~ V  (~ tqK - -  Bi) 2 Bi K - 2vK~ 

It follows f rom (34) and (35), that the quantities (r and ~q a re  independent of Bi (i.e., the heat -ex-  
change coefficient), and a re  determined only by two paramete r s  ~ = d l / d  2 and Y2 = r2~/~o/a = ~/Pd. The 
values of these quantities were computed on a digital computer  in the ranges ~ 1.2-2 and Y2 0-10. The 
resul ts  of the computation a re  presented in Figs. 1 and 2. 

It is seen f rom Fig. 1 that, f irst ly,  cr is not a rea l  quantity as is ordinari ly assumed,  but is com-  
plex, which is associa ted with the finite ra te  of metal heating, secondly, this quantity is f requency de- 
pendent. As it grows the absolute value of (r diminishes since only the metal  layers  closest  to the inner 
boundary hence succeed in being heated. The graphs in Figs. 1 and 2 afford the possibili ty of determining 
the admissibi l i ty of using a model with wall tempera ture  concentrated along the radius in every  specific 
case.  Thus for heat exchangers with re la t ively small  pipe diameters  (the radiation surfaces  of locomotive 
boi lers ,  etc.) the parameter  Y2 var ies  approximately  between 0 and 2 (if the cutoff frequency is assumed 
COma x ~ 0.2 sec -1) and ~ between 1.2 and 1.6. As is seen f rom Figs. 1 and 2, within these limits 1, 2 and 
or, ~q can be assumed real ,  independent of the frequency, and equal to the values at co = 0. The quantity 
cry0 =0 var ies  between 0.364 for ~ = 1.2 and 0.415 for ~ = 1.6, i.e., in this domain of values ~ is close to 
0.4, which agrees  with the resul ts  obtained in MoTsKTI [5] and in TsNIIKA by the selection of s team heaters  
in the computations. 

The values of crc0 =0 agree  with the quantities computed by the formula recommended in [3] 

1 {2 1 0.75 
'~=o-- ln~ ~2--1 l n ~  4~ ~ ~2__1 

However, it is more  convenient to use the quantity cr In[ ,  whose values a re  represented in Fig. 3 (for 
w = 0) as :a function of the rat io between the d iameters  ~ in computing the coefficient ~ In ~ by means of 
(26). It is seen f rom the figure that this dependence is a lmost  linear, hence, the formula 

1 + 0.32(~-- 1) Bi 

can be recommended for pract ical  computations in the domain ~ = 1-1.6 for Y2 between 0 and 2. 

It should be noted that ~q ~ 1 for Y2 - 0-2, i.e., the method of heating (internal heat l iberation or 
heating f rom outside) exerts  pract ical ly  no influence on a,  hence (36) can be used in computing the dynamics 
of a tomic r eac to r s  as well as  radiat ion heating sur faces  of boilers  with a boiling heat c a r r i e r  in the case 
of a s t rong dependence of the heat c a r r i e r  proper t ies  on the tempera ture  and pressure ,  or in case they a re  
constant. 

As regards  computations of the dynamic charac te r i s t i cs  of pipelines of grea t  length and large d iam-  
e ters  (0.1-0.2 m), then because the range of variat ion of Y2 is broadened to 0-20 in these cases ,  it is im-  
possible to assume o- constant even for small  ~ (see Fig. 1), and either the model with wall temperature  
distributed along the radius should be used in the computations, or  a var iable  (frequency dependent) cr in 
the fo rm of a complex quantity should be given when using the concentrated model. This deduction is con- 
f i rmed by computations performed in the TsNIIKA, which showed that the dynamic charac te r i s t i cs  of pipe- 
lines in boiler aggregates ,  computed by means of the concentrated and distributed models (the wall was 
considered flat), diverge strongly. 

rl, r2, r 
dl, d2 
l 
t 
V 

N O T A T I O N  

are  the outer, inner, and running radius of the heat-exchanger  pipe, respect ively,  m; 
a re  the outer and inner d iameters ,  m; 
is the running coordinate of the heat-exchanger  length, m; 
is the time, sec; 
is the specific volume of the heat c a r r i e r ,  m3/kg;  
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I 
| 

P 

G 
Cp 

PM, CM, 3"M 

a = 3.M/ PMCM 
,5 

Q1, Q2 
Qin 
c~ 2 
j = { - 1  

is the enthalpy of the heat c a r r i e r ,  J / k g ;  
is the t empera tu re  of heat c a r r i e r ,  ~ 
is the p re s su re  of heat c a r r i e r ,  N/m2; 
is the mass- f low ra te  of the heat c a r r i e r ,  k g / m  2- sec; 
is the specific heat of the heat c a r r i e r ,  J / k g .  deg; 
a r e  the density, specific heat,  and heat conduction of the metal  pipe, respect ively ,  kg 
/ m  s, J / k g . d e g ,  J / m . d e g . s e c ;  
is the t empera tu re  conduction of the metal ,  m2 / sec ;  
is the t empera tu re  of the pipe wall, ~ 
is the coefficient of hydraulic res i s t ance ;  
is the slope of the hea t -exchanger  pipe; 
a re  the heat flux r e f e r r e d  to the outer and inner pipe wall, respect ively ,  W/m2; 
is the intensi ty of internal  heat l iberat ion at the wall, W/mS; 
is the coefficient  of heat exchange f ro m  the wall to the heat c a r r i e r ,  W / m  2 �9 deg; 
is the imaginary  unit; 
is the c i r cu la r  frequency,  sec -i. 

S u b s c r i p t s  

0 denotes the s ta t ic  state;  
H denotes the quantity at the initial sect ion of the heat exchanger,  i .e . ,  for  l = 0. 
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